Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

نویسندگان

  • Ming Dong
  • Chongxing Zhang
  • Ming Ren
  • Ricardo Albarracín
  • Rixin Ye
چکیده

Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pt-Doped TiO2 Nanotube Arrays Sensor for Detecting SF6 Decomposition Products

The detection of partial discharge and analysis of SF6 gas components in gas-insulated switchgear (GIS) is important for the diagnosis and operating state assessment of power equipment. The use of a Pt-doped TiO2 nanotube arrays sensor for detecting sulfur hexafluoride (SF6) decomposition products is proposed in this paper. The electrochemical pulse deposition method is employed to prepare the ...

متن کامل

Preparation and Application of TiO2 Nanotube Array Gas Sensor for SF6-Insulated Equipment Detection: a Review

Since Zwilling and co-workers first introduced the electrochemical anodization method to prepare TiO2 nanotubes in 1999, it has attracted a lot of researches due to its outstanding gas response and selectivity, making it widely used in gas detection field. This review presents an introduction to the sensor applications of TiO2 nanotube arrays (TNTAs) in sulfur hexafluoride (SF6)-insulated equip...

متن کامل

Application of CNTs Gas Sensor in Online Monitoring of SF6 Insulated Equipment

The detection and analysis of SF6 decomposition components are of great significance in online condition assessment and fault diagnosis of GIS. Considering the shortcomings of general detection methods, carbon nanotubes (CNTs) gas sensor was studied to detect the SF6 decomposition components because of its advantages in large surface activity and abundant pore structure, et al. The large surfac...

متن کامل

Synthesis of Single-Crystalline Octahedral Co3O4 with Solid-State Thermal Decomposition

In this paper, single crystalline octahedral Co3O4 with dimensions about 100–500 nm and smooth surface has been prepared by solid-state thermal decomposition of cobalt(II) Schiff base complex Co((3,4-MeO-ba)2 en)Cl2 as new precursor at 450ºC under air atmosphere for 3.5 h. Surface morphology of the products were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder ...

متن کامل

Study of the reaction products of SF6 and C in the laser heated diamond anvil cell by pair distribution function analysis and micro-Raman spectroscopy

The decomposition of SF6 in the presence of glassy carbon was induced in laser heated diamond anvil cells at 10 to 11GPa and 2000 to 2500K. The reaction products were characterised by synchrotron X-ray diffraction, including high pressure pair distribution function analysis, and micro-Raman spectroscopy combined with atomistic model calculations. The decomposition leads to elemental amorphous h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017